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Anion recognition by a novel Fipronil-based receptor:
efficient deprotonation or stable intermolecular hydrogen bonding
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Abstract

Strong electron-deficient heterocycles of acetyl Fipronil (F3) was designed and synthesized, its ability for anion recognition was inves-
tigated by UV and NMR analyses. This novel Fipronil-based receptor F3 shows strong binding affinity with acetate (P107 M�1), phos-
phate or fluoride ion through efficient deprotonation. In addition, its interaction with chloride anion or other weak base anions through
stable intermolecular H-bonding was also reported.
� 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. The possible equilibria of LH and A�.
Anions play vital roles in biological and chemical pro-
cesses.1 The development of novel synthetic receptors2

bearing biologically importance for anions is recently
emerged as a significant important research area. Gener-
ally, synthetic receptors for anions employ various combi-
nations of pyrroles, guanidiniums, Lewis acids, amides,
and urea/thiourea groups as binding sites to form N–
H� � �X hydrogen bonds. According to a recent view,3 ‘all
hydrogen bonds can be considered as incipient proton
transfer reactions, and for strong hydrogen bonds, this
reaction can be in a very advanced state’. Thus, it may
be the potential occurrences of an acid–base process for
comprehend the intrinsic interaction between a given
–NH-containing receptor, speciously those biomolecules
possibly binding with anions.

In general, the following four possible equilibriums
(Fig. 1) may take place in solution, involving the neutral
receptor LH and anion A�. Several groups4 have discussed
Eqs. 1 and 2 in detail by interaction of amide, urea or thio-
urea, pyrrole-based receptors with anions. A genuine
H-bond complex was formed (Eq. 1) and further to leave
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the deprotonated L� (Eq. 2), which can be ascribed to a
‘frozen’ proton release from the donor (the acid) to the
acceptor (the base) and the more advanced proton release
process. In Eq. 4, the proton releases in the neutral receptor
LH itself to further generate the new receptor L0H, which
can be ascribed to anion-catalyzed organic reaction.5 We
were interested to verify whether Eq. 3 can be found
through simple biologically important receptor interacting
with anions in solution. For a definitive proton release
from the receptor to anion (Eq. 3), which mainly related
to the intrinsic acidity of LH,4n its acidity should be stron-
ger than those of the general urea or thiourea derivatives.
And also, the stability of HA in solution would be benefi-
cial to the proton release process according to the rule of
Eq. 2. Thus, further polarizing the N–H bonds and increas-
ing its hydrogen-bond donor tendencies are indispensable
through introducing the stronger electron-withdrawing
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Scheme 1. Reagents and conditions: (i) CH3COCl, CH2Cl2, reflux (35%);
(ii) mCPBA, rt, CH2Cl2 (70%).
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Fig. 3. UV–vis titration of 20 lM F3 with Bu4N+AcO� in CH3CN.
Arrows show changes due to increasing concentration of A�. The inset
shows the absorbance at 285 nm as a function of [AcO�], ½H2PO4

�� and
[F�].
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substituents (e.g., –NO2, CF3), which should be appended
to the NH framework.4a The potential occurrence of a
strong acid–base process should be investigated with effi-
cient proton release from receptor to anion.

With these considerations in mind, we observed that a
derivative of Fipronil6 N-(3-cyano-1-(2,6-dichloro-4-(tri-
fluoromethyl)phenyl)-4-(trifluoromethylsulfinyl)-1H-pyrazol-
5-yl)acetamide (F3, Fig. 2), which provides with three
strongly electron-withdrawing groups (–CN, –CF3, 2,6-
Cl2-4-CF3-phenyl) appended to the NH framework.
Herein, we report an example of novel Fipronil-based
receptor F3, which can recognize anions through efficient
deprotonation or stable intermolecular hydrogen bonding.

Generally, most pesticides such as Fipronil, which has a
functional group (–NH2), show only slightly reactive or,
indeed, non-reactive.7 Not surprisingly, the NH2 of Fipro-
nil is considerable unreactive with acetyl chloride through
the conventional methods. Thus, it appeared necessary to
use a novel strategy for the preparation of receptor F3.
Interestingly, compound F28 was obtained by introducing
a strongly dimethylammonium 4-methylbenzene-sulfonate
(1) into the above unreactive system. Further, oxidation
of compound F2 with equimolar of mCPBA gave the final
receptor F39 in good yields (Scheme 1).

The anion sensing ability of F3 was evaluated by UV
and proton NMR analyses. Figure 3 shows the spectro-
scopic changes observed when F3 is treated with increasing
quantities of tetrabutylammonium acetate (TBAA) in
CH3CN. In this case, the new peaks at 285 nm increased
upon the addition of TBAA, with saturation being
observed after the addition of ca. 1 equiv. There is a clear
isosbestic point at 238 nm, which indicates a clean conver-
sion throughout the titration process. This new band
reflects electronic modification of receptor takes place,
induced by N–H deprotonation. Standard 1:1 curve-fitting
procedures were then used to derive binding constants,10

which is at least equal to 4 � 107 M�1 in CH3CN and
exceeds that reported urea or thiourea4n (106 M�1). We
propose that the high oxoanions affinity of F3 results from
its stronger acidity than that of urea or thiourea
derivatives.

The 1H NMR titration experiments of F3 with TBAA
was investigated in CD3CN. Upon the addtion of 0.34 or
2.58 equiv of TBAA, the NH proton signal (8.93 ppm) of
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Fig. 4. 1H NMR spectra of F3 with tetrabutylammonium acetate in
CD3CN at 298 K (only NH and aromatic protons are shown)
[F3] = 8.0 � 10�3 M, [AcO�] = 0–2.0 � 10�2 M.

Table 1
Affinity constants for the binding of anionsa by receptor F3

Anion Ka (M�1) Anion Ka (M�1)

AcO�b 4.16 � 107 Br� 1.32 � 103

H2PO4
�b 2.27 � 105 HSO4

� 4.50 � 102

F�b 1.76 � 105 I� 2.70 � 102

Cl� 1.50 � 103 CF3SO2
� 2.06 � 102

NO3
� 1.40 � 103 ClO4

� 1.34 � 102

a The anions studied were in the form of their tetrabutylammonium
salts.

b Determined in acetonitrile solvent by UV–vis; error 615%. The other
anions were determined by 1H NMR analysis in CDCl3 at 298 K; error
610%.
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Similarly, the same detectable spectral changes were
observed in the interaction of F3 with tetrabutylammo-
nium fluoride (TBAF) and tetrabutylammonium phos-
phate (TBAP). Those absorbances at 285 nm as a
function of anions (TBAA, TBAP and TBAF) are shown
in Figure 3. The NH proton chemical shifts of F3 in the
presence of TBAF or TBAP were also recorded (Supple-
mentary data). These binding constants are collected in
Table 1, along with those for other anions. On the basis
of the established binding trend shown in Table 1
ðCH3COO� > H2PO4

� > F�, the binding of the oxoanions
is enhanced significantly than F�, which is presumed to be
dependent on the less stability of HF in solution.4n

To evaluate chloride ions and other weak base anions,
we further study the interaction of F3 with anions by
UV–vis or NMR analyses. No spectral modifications
were observed for Cl�, HSO4

�; NO3
�, Br�, I�,

ClO4
�; CF3SO2

� even if added in large excess (Supplemen-
tary data). Thus, the selectivity of F3 is mainly related to
the basicity of the anions. Furthermore, the 1H NMR
experiment in CDCl3 reveals that receptor F3 forms a
strong 1:1 complex, which implied the formation of an
intermolecular hydrogen bond between receptor F3 and
chloride ions. It is evident from that concerted downfield
shifts were observed for amide proton as receptor F3 was
Fig. 5. 1H NMR titration of F3 with tetrabutylammonium chloride i
exposed to increasing concentrations of chloride. The
downfield shift of amide protons occurred in the 1:1 com-
plex from 8.50 to 12.60 ppm (Dd = 4.10 ppm). The reso-
nances for the acetyl protons of F3 were also slight
shifted (Fig. 5).

The 1H NMR titration of F3 for HSO4
�; NO3

�, Br�,
I�, ClO4

�; CF3SO2
� was also carried out, respectively

(Fig. 6). The association constants of that complexation
were calculated by a 1:1 nonlinear curve fitting (Table 1).
An inspection of this table, which reveals that the greatest
affinity is displayed for AcO�, followed by H2PO4

� >
F� > Cl� > NO3

� > Br� > HSO4
� > I� > CF3SO2

� >
ClO4

�.
One of the most interesting phenomenon is that the

acetyl Fipronil F3 shows most high binding affinity with
acetate anion, which might be helpful to comprehend the
outstanding performance11 of Fipronil in biological sys-
tems. Although several results were reported on the field
of the photoproducts12 and metabolites13 of Fipronil pesti-
cides, this report might provide a new viewpoint, from
molecular recognition of anions, probably to explain the
performance of Fipronil insecticide. In summary, we have
demonstrated here that the acetyl Fipronil F3 is able to
associate with anions through efficient deprotonation or
stable intermolecular hydrogen bonding.
n CDCl3 at 298 K [F3] = 8.0 � 10�3 M, [Cl�] = 0–2.0 � 10�2 M.
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Fig. 6. Plot of the chemical shift of the NH protons of F3 (3.46 � 10�2 M)
upon increasing the concentration of nBu4N+X� in CDCl3.
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